3 research outputs found

    Optimization of privacy-utility trade-offs under informational self-determination

    No full text
    The pervasiveness of Internet of Things results in vast volumes of personal data generated by smart devices of users (data producers) such as smart phones, wearables and other embedded sensors. It is a common requirement, especially for Big Data analytics systems, to transfer these large in scale and distributed data to centralized computational systems for analysis. Nevertheless, third parties that run and manage these systems (data consumers) do not always guarantee users’ privacy. Their primary interest is to improve utility that is usually a metric related to the performance, costs and the quality of service. There are several techniques that mask user-generated data to ensure privacy, e.g. differential privacy. Setting up a process for masking data, referred to in this paper as a ‘privacy setting’, decreases on the one hand the utility of data analytics, while, on the other hand, increases privacy. This paper studies parameterizations of privacy settings that regulate the trade-off between maximum utility, minimum privacy and minimum utility, maximum privacy, where utility refers to the accuracy in the estimations of aggregation functions. Privacy settings can be universally applied as system-wide parameterizations and policies (homogeneous data sharing). Nonetheless they can also be applied autonomously by each user or decided under the influence of (monetary) incentives (heterogeneous data sharing). This latter diversity in data sharing by informational self-determination plays a key role on the privacy-utility trajectories as shown in this paper both theoretically and empirically. A generic and novel computational framework is introduced for measuring privacy-utility trade-offs and their Pareto optimization. The framework computes a broad spectrum of such trade-offs that form privacy-utility trajectories under homogeneous and heterogeneous data sharing. The practical use of the framework is experimentally evaluated using real-world data from a Smart Grid pilot project in which energy consumers protect their privacy by regulating the quality of the shared power demand data, while utility companies make accurate estimations of the aggregate load in the network to manage the power grid. Over 20,000 differential privacy settings are applied to shape the computational trajectories that in turn provide a vast potential for data consumers and producers to participate in viable participatory data sharing systems

    Decentralized Collective Learning for Self-managed Sharing Economies

    Get PDF
    The Internet of Things equips citizens with a phenomenal new means for online participation in sharing economies. When agents self-determine options from which they choose, for instance, their resource consumption and production, while these choices have a collective systemwide impact, optimal decision-making turns into a combinatorial optimization problem known as NP-hard. In such challenging computational problems, centrally managed (deep) learning systems often require personal data with implications on privacy and citizens’ autonomy. This article envisions an alternative unsupervised and decentralized collective learning approach that preserves privacy, autonomy, and participation of multi-agent systems self-organized into a hierarchical tree structure. Remote interactions orchestrate a highly efficient process for decentralized collective learning. This disruptive concept is realized by I-EPOS, the Iterative Economic Planning and Optimized Selections, accompanied by a paradigmatic software artifact. Strikingly, I-EPOS outperforms related algorithms that involve non-local brute-force operations or exchange full information. This article contributes new experimental findings about the influence of network topology and planning on learning efficiency as well as findings on techno-socio-economic tradeoffs and global optimality. Experimental evaluation with real-world data from energy and bike sharing pilots demonstrates the grand potential of collective learning to design ethically and socially responsible participatory sharing economies

    How value-sensitive design can empower sustainable consumption

    Get PDF
    In a so-called overpopulated world, sustainable consumption is of existential importance. However, the expanding spectrum of product choices and their production complexity challenge consumers to make informed and value-sensitive decisions. Recent approaches based on (personalized) psychological manipulation are often intransparent, potentially privacy-invasive and inconsistent with (informational) self-determination. By contrast, responsible consumption based on informed choices currently requires reasoning to an extent that tends to overwhelm human cognitive capacity. As a result, a collective shift towards sustainable consumption remains a grand challenge. Here, we demonstrate a novel personal shopping assistant implemented as a smart phone app that supports a value-sensitive design and leverages sustainability awareness, using experts’ knowledge and ‘wisdom of the crowd’ for transparent product information and explainable product ratings. Real-world field experiments in two supermarkets confirm higher sustainability awareness and a bottom-up behavioural shift towards more sustainable consumption. These results encourage novel business models for retailers and producers, ethically aligned with consumer preferences and with higher sustainability
    corecore